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A NOTE ON KINETIC ENERGY, DISSIPATION AND ENSTROPHY∗

JIE-ZHI WU† , YE ZHOU‡ , AND MENG FAN§

Abstract. The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to
include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no
contributions to the change of kinetic energy. These dissipation constituents are used to identify typical
compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified
kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses
but in which the full dissipation reenters.
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1. Introduction. We make a general theoretical examination on the relation between kinetic energy
transport, dissipation, and enstrophy. First, we derive an exact but simplified transport equation for the
kinetic energy of viscous compressible flow, in which the full dissipation function is replaced by the squares
of vorticity and dilatation. This forms a local counterpart of the classic Bobyleff-Forsyth formula [1] on
the integral equivalence of incompressible dissipation and enstrophy under special boundary condition, and
provides a physical clarification on dynamic processes really involved in the evolution of kinetic energy. The
dissipation constituents are used to identify typical compact flow structures. Second, we cast the incom-
pressible version of the simplified kinetic-energy equation to a novel form, of which the local spatical average
does not explicitly depend on boundary conditions, but the full dissipation reappears along with enstrophy.
This result is of relevance to some current studies of intermittency and scaling laws in inhomogeneous and
anisotropic turbulence.

2. Dissipation constituents. Let ωωω = ∇×uuu and ϑ = ∇·uuu be the vorticity and dilatation, S and T be
the strain-rate and stress tensor, respectively, so that for Newtonian fluid T = (−p +λϑ)I+ 2µS (e.g. [1,2]),
where I is the unit tensor, and µ and λ are the shear and second viscosity1. Throughout this note we assume
µ is constant. The conventional transport equation for kinetic energy E = |uuu|2/2 reads

ρ
DE

Dt
= ρfff · uuu + ϑp +∇ · (T · uuu)− Φ,(1)
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1One may also replace S by its derivatoric part S′ = S− 1

3
ϑI so that T = (−p + ζϑ)I+ 2µS′, where ζ = λ + 2

3
µ is the bulk

viscosity coefficient. This does not affect our argument but is less convenient.
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where fff is a body force and Φ = λϑ2 + 2µS : S is the dissipation rate. It is straightforward to derive an
invariant decomposition Φ = Φ̂ + ΦB, where

Φ̂ = (λ + 2µ)ϑ2 + µ|ωωω|2,

ΦB = −∇ · (2µB · uuu),(2)

are, respectively, a positive-definite part caused by ϑ2 and |ωωω|2, and a non positive-definite “dissipation”
caused by surface-strain rate tensor2 [3]

B ≡ ϑI−∇uuuT with ∇ ·B = 0.(3)

From (2) the compressible extension of the Bobyleff-Forsyth formula follows:∫
V

ΦdV =
∫

V

[(λ + 2µ)ϑ2 + µ|ωωω|2]dV − 2µ

∫
∂V

nnn ·B · uuudS.(4)

Thus, if nnn · (B · uuu) = 0 on ∂V , we have an integral equivalence of Φ and Φ̂.
A similar decomposition of T has been introduced by Wu and Wu [4-5]:

T = T̂ + TB, T̂ ≡ −ΠI + 2µΩΩΩ, TB ≡ −2µB,(5)

where Π ≡ p− (λ + 2µ)ϑ is the isotropic part of T and ΩΩΩ is the vorticity tensor. Substituting (5) into the
Cauchy motion equation reveals that TB plays no role in momentum balance. Now, substituting (5) into
∇ · (T · uuu) in (1) leads to a splitting of the work rate W per unit volume done by surface stress:

W = ∇ · (T · uuu) = Wp + Wϑ + Wω + WB ,

where

Wp = −∇ · (puuu), Wϑ = ∇ · [(λ + 2µ)ϑuuu],

Wω = −∇ · (µωωω × uuu), WB = −∇ · (2µB · uuu).

Thus, WB and ΦB are always self-balanced, making no contribution to the change of E. Hence, Eq. (1) can
be simplified to

ρ
DE

Dt
= ρfff · uuu + ϑp +∇ · (T̂ · uuu)− Φ̂,(6)

which proves a local “equivalence” of Φ and Φ̂ under the condition that T be replaced by T̂ simultaneously.
Whenever TB does a work (positive or negative), it is directly and locally dissipated to ΦB which, as is
easily proved, does cause a change of the internal energy. Therefore, so far as its mechanical aspects are
concerned, a Newtonian fluid can well be simplified to a hypothetic medium of which the motion consists of
only an isotropic expansion/compression and a spin. A significant saving of this simplification in numerical
computation was cited in [5]. The surface deformation, which is generically most complicated, plays no role
except on free surface [4].

2In this report and Dishington’s paper there is a sign difference in the definition of B.
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In the above analysis a key issue is the distinction between Φ̂ and ΦB or the relation between Φ and
Φ̂. Studying their distribution characters allows us to identify different coherent and compact structures in
high Reynolds-number flows. Typically, these include two shearing structures: thin vortex layers and tubes,
and a compressing structure, shock waves. While across a shock there is evidently an extremely strong peak
of ϑ2, the distribution character of ω2 and ΦB for shearing structures can be easily illustrated by idealized
models. For a unidirectional shear flow with uuu = (U(y, t), 0, 0) in Cartesian coordinates (x, y, z), there is

Φ̂ = Φ = µω2 =
(

∂U

∂y

)2

, ΦB = 0;

while for a pure vortex with uuu = (0, v(r, t), 0) and ωωω = (0, 0, ω(r, t)) in cylindrical coordinates (r, θ, z), there
is

Φ̂ = µω2, ΦB = WB = −4µ
v

r

∂v

∂r
, Φ = µ

(
∂v

∂r
− v

r

)2

.

Note that inside the vortex core (r < r0) with ∂v/∂r > 0 there is a negative peak of ΦB which cancels the
peak of Φ̂ (Φ̂ = Φ̂max at r = 0), so that Φ remains small as it should (Φ = 0 in a solid-like core). But
outside the core ΦB reaches a hollow-tube like (macaroni-like) positive peak ΦBmax at an r = rm > r0,
which becomes the main contributor to Φ. For r > rm the contribution of enstrophy to Φ is neglegible. The
peak behaviors of Φ̂ and ΦB for layers and tubes can be easily checked by considering, say, U(y) = tanh(y/δ)
with δ � 1 and an Oseen vortex with µ � 1, respectively.

When Re � 1, these idealized models can serve as local building blocks of more generic layer and tube
structures, provided that the strain components along the layers or tube axes are weaker than the vorticity
therein. In particular, in a compressible turbulence the strong peaks of ϑ2, ω2, and the simultaneous peaks of
ω2 and Φ are good indicators of random shocklets, filaments, and shearing sheets, respectively. Indeed, in a
numerical simulation of two-dimensional supersonic turbulence, Porter et al. [6] have observed complex sheet-
like shocklet structures by visualizing dilatation field. From their direct numerical simulations of a uniformly
sheared incompressible turbulence, Tanaka and Kida [7] used the ratio Φ̂/Φ to identify many thin vortex
filaments with Φ̂/Φ > 2 (as shown above, these high-enstrophy structures must be surrounded by weaker
hollow-tube peaks of strain), while at the high enstrophy region with comparable strain 1/2 < Φ̂/Φ < 4/3, the
vortex sheet structures were observed. These results are confirmed by Boratav and Pelz [8], who conducted
direct numerical simulations of an unforced flow and investigated the strain-vorticity correlation in a plane
spanned by Φ/µ and enstrophy Φ̂/µ. Now, our result provides a theoretical support for these identifications.
Interestingly, for the Oseen vortex at t = 1 we found ΦBmax/Φ̂max = 0.09, completely independent of the
Reynolds number. The ratio rm/r0, which is about 1.2, has only a very weak dependence on Re. Thus,
as Re → ∞ and r0 → 0, the distribution of Φ̂ and ΦB (or the full Φ) for a filament becomes a singular
“spaghetti” enclosed by a singular “macaroni”, having the same fractal dimension (approaching 1).

3. Kinetic-energy equation. We now further focus on incompressible flow with ρ = 1, which is a
typical situation where the thermodynamics is not involved. In this case (6) reduces to

DE

Dt
= fff · uuu−∇ · (puuu)− ν∇ · (ωωω × uuu)− Φ̂.(7)

In the studies of turbulent-energy budget one removes the divergence terms in (7) by taking average over a
region with periodic boundary conditions. Then for statistically steady turbulence and as ν → 0, one obtains
a balance solely between the work of stiring force fff and energy cascade in integral range, and a balance solely
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between the energy cascade and dissipation (enstrophy) in inertial range (e.g. Frisch [9]). This procedure
is necessary to obtain the Kolmogorov scaling law and its modern revisions. However, for the local scaling
of structure functions in an inhomogeneous and anisotropic turbulence, the boundary condition on a small
sphere (in which the average is to be taken) must be kept generic. Therefore, it will be highly interesting
if a general incompressible energy equation can be cast to a form free from work-rate terms, so that the
averaging process does not explicitly rely on specific boundary conditions. We now consider this issue.

The advection of E and pressure work in (7) can be combined to ∇·(uuuh0), where h0 is the stagnation en-
thalpy. To remove this term we split the momentum equation into two parts: a transverse or divergence-free
part (including harmonic components), and a longitudinal or curl-free part. Namely, we make a decom-
position of fff and the Lamb vector lll = ωωω × uuu, denoted by fff = fff⊥ + fff‖ and lll = lll⊥ + lll‖. It then follows
that

∂uuu

∂t
= fff⊥ − lll⊥ − ν∇×ωωω, ∇h0 = −lll‖,(8)

where lll⊥ is the projection of advection uuu · ∇uuu onto the solenoidal space. From (8a) there is

∂E

∂t
= (fff⊥ − lll⊥) · uuu− ν∇ · lll − Φ̂.(9)

Compared to (7), the pressure work is absent, and advection retains a “residue” lll⊥ · uuu, which is implicitly
boundary-dependent since the projection is a global operator. Then, since

Φ̂ = ν|ωωω|2, ΦB = 2ν∇ · (uuu · ∇uuu) = −2ν∇2p,

there is

−ν∇ · lll = ν∇2h0 = ν∇2E − 1
2
(Φ− Φ̂).

Therefore, from (9) a novel diffusion equation for the kinetic energy follows:(
∂

∂t
− ν∇2

)
E = (fff⊥ − lll⊥) · uuu− 1

2
(Φ + Φ̂),(10)

in which dissipation and enstrophy appear simultaneously and symmetrically, but all boundary-dependent
work-rate terms disappear. Note that the reappearance of Φ in (10) does not conflict with (7); it comes from
a part of the vorticity work (the other part being the diffusion of E). Moreover, compared to the usual form
of the energy cascade [9], we now see that the cascade is neatly represented by the statistic average of lll⊥ ·uuu,
which is dominated by the transverse Lamb vector and has a compact support where lll⊥ 6= 0.

4. Conclusion. It has been noticed that the relative contributions to the dissipation from strain-
dominated and enstrophy-dominated structures may be relevant to the strength of intermittency, as well
as to the scalings in longitudinal and transversal structure functions [10]. Now, by placing the enstropy
and dissipation in equal footing and exhibiting their interplay, Eq. (10) clearly emphasizes that, if a more
boundary-independent (and hence more universal) theory is to be reached, both strain rate (via dissipation)
and vorticity (via enstrophy) are important in the energy transfer process. On the other hand, if (7) is
used, one need reconsider the respective roles of full dissipation and enstrophy. In either case a more careful
treatment of the effect of boundary condition on the average over a small sphere in inhomogeneous and
anisotropic turbulence is necessary.
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